
Always Playable
Continuous Delivery as a game development philosophy

1



About myself

2009-2015

2015-2018

2



About myself

2018-Present

● Studio opened in 2018

● 30 employees

● AAA Veterans

PROJECT C launched in pre-alpha - http://project-c.darewise.com

3



Let’s start a game studio

4



Pillars and Philosophy

5

WHY

HOW

WHAT

● High quality games
● Need to be more efficient to compete

● Fast Iteration
● Best way to ensure quality in the product

● State of the art tools and processes
● Quality of life increases quality of the product

● Lean startup philosophy and culture
● Always playable

● Stability allows iteration
● Investor or publisher may be in the room right now! What can you show?

● But we start with…
● …no team, no time, no budget
● Must be operational ASAP



Infrastructure and Tools

6



● Use SaaS tools
○ Managed services = no setup, no maintenance, no outages

○ Use centralized Authentication

○ Not fully customizable but good enough

○ Lease everything, don’t immobilize cash

● There’s an app for everything
○ Mail and Auth: Office 365 or GSuite

○ HR: Payroll (Payfit), Expenses (Revolut for Business), country-specific...

○ Project Management: Jira, Confluence, Trello, Hansoft... 

● Build on top of cloud services
○ Credit programs for startups

○ Workstations as a service = no hardware to buy

● When you outgrow these you’ll have the money to build a bespoke solution

Off the shelf

7



Bread and butter

● Most people work on the Game Client + Server
○ Optimize the user experience for them

● Don’t forget satellite projects
○ Online backend services, DevOps scripts, Pipeline Tools...

● Simplest possible project setup
○ Install source control + Get latest

● Self-contained project
○ Include all sub-projects and dependencies

● Do not build fancy tools now
○ Simple DOS/Python scripts if necessary

○ Source control is made to manage dependencies (submodules or equivalent)

○ If you build anything, build tools on top of source control

8



● Source control is the only infrastructure you need
○ Store all critical data in source control and back it up

○ Treat other (local) data stores as temporary

● Source control tools and integrations, use them!
○ Code review

○ Cloud hosting

○ Backup procedures

○ Multi-site solutions for outsourcing

○ Automation

■ Triggers: validate commits and automate processes

■ Continuous Integration and DevOps

● Abuse source control
○ Store all your build artifacts

○ Store all your work files (DCC files, FBX files etc)

○ ...

Bread and butter

9



Notes

● separate code and game data 

● Too large, only sync relevant files

● Too large, only sync relevant files

○ Shared folder is also fine here

● AwesomeProject

○ Code

○ GameData

○ WorkFiles

○ Binaries

○ Tools

○ DevOps

○ Backend

○ Artifacts

Self-contained project

10

Who needs it?

Coders

All

Artists

Artists

All

Coders

Coders

QA



Improving Iteration time

11



Case Study

12

Real studio #1 Real studio #2 Real studio #3 Darewise

Local code change Hot-Reload Rebuild time Rebuild time

<10 minutes

UE Hot Reload

<1 minute

Gameplay Code

to

Other Programmer

Rebuild time Review + Approval + 

Tests + Rebuild time 

1 hour min

Rebuild time

<10 minutes 

Review + Approval 

+ Rebuild time

<2 minutes if lucky

Engine Code change

to

Gameplay Programmer

Blocked waiting for 

engine branch 

integration, stabilisation 

and tests 

1 week average

Blocked waiting for 

engine branch 

integration, stabilisation 

and tests 

1 month average

Rebuild time

<20 minutes 

Unreal full rebuild...

<30 minutes

… still waiting

Code change 

to

Non-coder

1 Gameplay Build / wk 

2 wk for engine change

Two builds per day CI Rebuild and submit

<15 minutes

CI Rebuild and submit

<5 minutes

Code Iteration: Time before a code change is deployed



Case Study

13

Real studio #1 Real studio #2 Real studio #3 Darewise

In-editor change Real-time 

Edit/Debug while playing 

in editor

Real-time

Play in editor must be 

stopped

Real-time

Play in editor must be 

stopped

Real-time 

Edit/Debug while playing 

in editor

External tool change Export 

1-3 minutes

Export + Restart Editor

1-5 minutes

Auto-reimport

<1 minute

Auto-reimport

<1 minute

Game data change 

to 

Someone else

Instantaneous

Sync from editor

Close editor + Sync + 

Reimport all

OR

Two builds per day

Instantaneous

Sync from editor

Instantaneous

Sync from editor

Test on target 

environment

Always cooked and 

packaged, just deploy

~5 minutes

Cook + Package + 

Deploy

~1 hour

Cook + Package + 

Deploy

~30 minutes

Cook + Package + 

Deploy

~30 minutes

Game Data Iteration: Time to test a change



Improving Iteration time

14

● Iteration time is limited by Game Engine and SCC/CI processes

● Unreal has long compilation times and cooking

● Engine and Tools: Optimize iteration time and workflow
○ Use cooking as optimization step, not as mandatory step

○ UX is $$$, invest in UX, great ROI

● Language
○ Low level: optimize for performance (C, C++, Rust, Jai…)

○ High level: optimize for iteration time

■ Visual scripting: empower your designers

■ Can be optimized or hardcoded later

■ Communication tool: bad script better than good doc

● Everything must be automatable
○ Corollary: Automate everything you can



Improving Iteration time

15

● Eliminate noise
○ As little context switching as possible

○ Fully featured editor is better than constellation of tools

○ Consistency of UX between tools

○ Source control integrated in editor

○ Minimize use of external tools

● Essential workflows
○ Play in editor

○ Run Client & Server in editor

○ Run Client & Server cooked locally before committing

○ Development Game Server infrastructure

● Local workflow is 99.9% of development
○ Editor and final target as close as possible

○ Bugs should be reproducible locally

○ Bugs that are only present on target environment may be impossible to debug



Continuous Integration
And DevOps

16



Fast Iteration Job

17

Code change 

was submitted

to SCC

Build the editor 

executable

Build the game 

executable
Submit binaries

to SCC

● Most important job

● Main improvement for iteration time

● Do not perform tests before committing

● Optimize for speed
○ Only build required targets for local workflows

○ Use iterative build

○ Clean/Rebuild at night



Nightly Build Job

18

Every night
Build game 

executables

Cook and Package 

the game Archive Artifacts

● Build all targets for daily QA and playtests

● Need manual trigger, you will use this all the time

● Optimize for speed
○ Use iterative build

○ Clean/Rebuild every week

● Backup the archive

Deploy to 

test servers



Exotic Configuration Job

19

On Timer

(~20 minutes)

Build exotic 

configuration

Cook and Package 

the game Report any error

● Examples: Mac, Linux, Consoles, Debug, Shipping...

● Visibility of errors
○ Email alerts don’t work

○ Use a dashboard on a big screen

● Job needs to run often enough but not immediately on change

● Add these jobs even if you don’t plan to support configuration
○ If you change your mind you won’t regret it

○ Very easy fixes if caught early



● TDD is hard to apply to gameplay code

● Good candidates for TDD/Unit Tests
○ Core low-level libraries

○ Online micro-services

○ Critical layers and services (database, authentication, payment…)

● Tests should be performed post-commit

● Parallelize test jobs

Automated Tests Job

20

On Timer

(~20 minutes)
Build test target Perform tests Report any error



More ideas

21

● Static code analysis
○ Critical if working with c++

○ Treat defects as bugs

● Metrics and reports
○ Server load tests

○ Client performance tests

● Automate Everything...



Which tools and languages to use?

● Use whatever works with your source control and hosting
○ Jenkins is industry standard

○ GitLab and TeamCity have good reputation

● Languages
○ Prefer Python to bash/DOS

● Virtualize your build system early
○ You will need to scale

○ On-premises and on the cloud

● Use infrastructure as code
○ Keeps jobs consistent with code

○ History/Diffs/Rollback of CI Jobs

○ Easier to deal with branch specificities

○ Invaluable when codebase gets fragmented

22



For multiplayer games

23

● Development Servers
○ Nightly build

○ Playtest build

○ Latest stable build

● Preparing for release
○ Development environments will be different from release

○ Dependency with online services

○ Client delivery method (Steam, Launcher VS Shared Folder)

○ Create a staging environment identical to live

○ As early as possible

● Release process
○ Automate as much as possible

○ Need human validation steps



Branching policy

24



Which source control to use?

25



Which source control to use?

● Surprisingly not obvious question

● You MUST use source control

● No excuses

● Dropbox is not enough

26



● Ubiquitous

● Decentralized

● Free and open-source

● Very bad at handling binary files
○ Even with Git-LFS

○ Basic File-locking introduced recently

○ No single-file operations!

● Notoriously bad user experience
○ GUI tools are all lacking

○ Need to use confusing command line

● Best cloud hosting solutions

● Best integrations and ecosystem

● You will need Git to collaborate with 3rd parties

Git

27



Perforce

● Industry standard for Games

● Centralized, single-file versioning

● P4 DVCS

● Best for large projects and binary files

● Most powerful GUI tools

● Integrations
○ Smaller ecosystem than Git or SVN

○ Git-Fusion: works with some caveats 

○ Helix4Git: Git repositories hosted on P4 server

● Administration
○ Steep learning curve but very powerful. Requires self-hosting.

○ Deep customization: triggers, exclusive locking…

○ Enterprise features: access control, edge servers for outsourcing sites...

● Very expensive 28



Plastic SCM

● “The version control for Games and big projects”

● Best UX for users and admins

● Two different GUIs
○ Gluon: artist-friendly, file-based with exclusive locks

○ Plastic: for programmers with state of the art toolset

29



Plastic SCM

● Semantic merge available as standalone tool

● Major drawback
○ A workspace must be either graph or file-based, not both

○ Separate code and data workspaces works best

● Integrations
○ Smallest ecosystem

○ Native integration with git ...

○ … with some caveats

● Less customizable than P4

● Much cheaper than P4

30



SVN

● Centralized, single-file versioning

● Free and open source

● Good GUI tools available

● Integrations
○ Integrated in Unity and Unreal

○ Smaller ecosystem than Git, but bigger than P4

● Reportedly bad at handling large projects
○ Perforce is known to perform much better

● Many cloud hosting solutions

● Popular choice for indies

● Perforce beats it in almost every way except cost

31



Other

● Mercurial
○ Has Git-LFS equivalent

● Unity Collaborate
○ Git Backend

○ Walled garden

○ No access to backend

○ Cannot be integrated in CI

● GitHub for Unity
○ Unity - Github specific

● GitCentral
○ Unreal specific

○ Centralized

○ File-based

○ Git-LFS backend
32

http://kahncode.com/gitcentral



Breakdown

33

Centralized Model Binary files 

Scaling

UX Ecosystem Cloud 

hosting

Pricing

Perforce File-based ++ + + -
Assembla

5 users free

$$$/u/year

SVN File-based - - ++ + Free

Git Graph -- -- ++++ ++ Free

Plastic Graph or File

But not both
++ ++ + -

Plastic cloud

23.25$/u/mo

595$ perpetual



Take-away

● Use source control!

● Use Perforce if you can afford it
○ Still the best solution today

○ Watch out for Plastic SCM

● Using Git with cloud hosting
○ < 5 users - Azure DevOps

○ <10 GB - GitLab

○ >10 GB - BitBucket

● Contact me if you want tailored advice on this topic

● Using Unreal and on a budget, try GitCentral

34



Always Playable

35



Always Playable

36

● The best infrastructure is not enough...

● … you need culture and discipline
○ Enforce discipline from day one

○ Almost impossible to create this culture later

● Do not let instability accumulate
○ Regression, crash, assert or test failure is treated as blocker

○ High priority bugs planned to be fixed in the sprint

○ Debug day each sprint

○ Boy scout rule: you find it you fix it (or escalate it)

● Peer review everything (code and data)

● Mandatory weekly playtest
○ Is only possible if the game is stable

○ Discover issues earlier and improve the game

○ Increase in overall quality



Always Playable

● Downsides
○ If you have continuous integration with post-commit tests...

○ … bugs and crashes will get continuously delivered as well!

○ The gain in iteration time is worth it if you make sure failure is treated immediately

● Slow down production velocity
○ Sacrifice some iteration time to introduce review processes

○ Stability before features slows down tasks...

○ … but bugfixes take less time now than they will later

● Better overall results
○ Better stability improves iteration time and quality of life

○ Fast iteration time and QoL leads to higher quality result

● Real gains but hard to quantify to team and management
○ Manage team frustration with the processes

● It’s up to you now!
37



Thank you

38

samuel@kahncode.com

@kahncode


