
Always Playable
Continuous Delivery as a game development philosophy
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About myself

2009-2015

2015-2018
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About myself

2018-Present

● Studio opened in 2018

● 30 employees

● AAA Veterans

PROJECT C launched in pre-alpha - http://project-c.darewise.com
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Let’s start a game studio
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Pillars and Philosophy
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WHY

HOW

WHAT

● High quality games
● Need to be more efficient to compete

● Fast Iteration
● Best way to ensure quality in the product

● State of the art tools and processes
● Quality of life increases quality of the product

● Lean startup philosophy and culture
● Always playable

● Stability allows iteration
● Investor or publisher may be in the room right now! What can you show?

● But we start with…
● …no team, no time, no budget
● Must be operational ASAP



Infrastructure and Tools
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● Use SaaS tools
○ Managed services = no setup, no maintenance, no outages

○ Use centralized Authentication

○ Not fully customizable but good enough

○ Lease everything, don’t immobilize cash

● There’s an app for everything
○ Mail and Auth: Office 365 or GSuite

○ HR: Payroll (Payfit), Expenses (Revolut for Business), country-specific...

○ Project Management: Jira, Confluence, Trello, Hansoft... 

● Build on top of cloud services
○ Credit programs for startups

○ Workstations as a service = no hardware to buy

● When you outgrow these you’ll have the money to build a bespoke solution

Off the shelf
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Bread and butter

● Most people work on the Game Client + Server
○ Optimize the user experience for them

● Don’t forget satellite projects
○ Online backend services, DevOps scripts, Pipeline Tools...

● Simplest possible project setup
○ Install source control + Get latest

● Self-contained project
○ Include all sub-projects and dependencies

● Do not build fancy tools now
○ Simple DOS/Python scripts if necessary

○ Source control is made to manage dependencies (submodules or equivalent)

○ If you build anything, build tools on top of source control
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● Source control is the only infrastructure you need
○ Store all critical data in source control and back it up

○ Treat other (local) data stores as temporary

● Source control tools and integrations, use them!
○ Code review

○ Cloud hosting

○ Backup procedures

○ Multi-site solutions for outsourcing

○ Automation

■ Triggers: validate commits and automate processes

■ Continuous Integration and DevOps

● Abuse source control
○ Store all your build artifacts

○ Store all your work files (DCC files, FBX files etc)

○ ...

Bread and butter
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Notes

● separate code and game data 

● Too large, only sync relevant files

● Too large, only sync relevant files

○ Shared folder is also fine here

● AwesomeProject

○ Code

○ GameData

○ WorkFiles

○ Binaries

○ Tools

○ DevOps

○ Backend

○ Artifacts

Self-contained project
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Who needs it?

Coders

All

Artists

Artists

All

Coders

Coders

QA



Improving Iteration time
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Case Study
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Real studio #1 Real studio #2 Real studio #3 Darewise

Local code change Hot-Reload Rebuild time Rebuild time

<10 minutes

UE Hot Reload

<1 minute

Gameplay Code

to

Other Programmer

Rebuild time Review + Approval + 

Tests + Rebuild time 

1 hour min

Rebuild time

<10 minutes 

Review + Approval 

+ Rebuild time

<2 minutes if lucky

Engine Code change

to

Gameplay Programmer

Blocked waiting for 

engine branch 

integration, stabilisation 

and tests 

1 week average

Blocked waiting for 

engine branch 

integration, stabilisation 

and tests 

1 month average

Rebuild time

<20 minutes 

Unreal full rebuild...

<30 minutes

… still waiting

Code change 

to

Non-coder

1 Gameplay Build / wk 

2 wk for engine change

Two builds per day CI Rebuild and submit

<15 minutes

CI Rebuild and submit

<5 minutes

Code Iteration: Time before a code change is deployed



Case Study
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Real studio #1 Real studio #2 Real studio #3 Darewise

In-editor change Real-time 

Edit/Debug while playing 

in editor

Real-time

Play in editor must be 

stopped

Real-time

Play in editor must be 

stopped

Real-time 

Edit/Debug while playing 

in editor

External tool change Export 

1-3 minutes

Export + Restart Editor

1-5 minutes

Auto-reimport

<1 minute

Auto-reimport

<1 minute

Game data change 

to 

Someone else

Instantaneous

Sync from editor

Close editor + Sync + 

Reimport all

OR

Two builds per day

Instantaneous

Sync from editor

Instantaneous

Sync from editor

Test on target 

environment

Always cooked and 

packaged, just deploy

~5 minutes

Cook + Package + 

Deploy

~1 hour

Cook + Package + 

Deploy

~30 minutes

Cook + Package + 

Deploy

~30 minutes

Game Data Iteration: Time to test a change



Improving Iteration time
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● Iteration time is limited by Game Engine and SCC/CI processes

● Unreal has long compilation times and cooking

● Engine and Tools: Optimize iteration time and workflow
○ Use cooking as optimization step, not as mandatory step

○ UX is $$$, invest in UX, great ROI

● Language
○ Low level: optimize for performance (C, C++, Rust, Jai…)

○ High level: optimize for iteration time

■ Visual scripting: empower your designers

■ Can be optimized or hardcoded later

■ Communication tool: bad script better than good doc

● Everything must be automatable
○ Corollary: Automate everything you can



Improving Iteration time
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● Eliminate noise
○ As little context switching as possible

○ Fully featured editor is better than constellation of tools

○ Consistency of UX between tools

○ Source control integrated in editor

○ Minimize use of external tools

● Essential workflows
○ Play in editor

○ Run Client & Server in editor

○ Run Client & Server cooked locally before committing

○ Development Game Server infrastructure

● Local workflow is 99.9% of development
○ Editor and final target as close as possible

○ Bugs should be reproducible locally

○ Bugs that are only present on target environment may be impossible to debug



Continuous Integration
And DevOps
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Fast Iteration Job
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Code change 

was submitted

to SCC

Build the editor 

executable

Build the game 

executable
Submit binaries

to SCC

● Most important job

● Main improvement for iteration time

● Do not perform tests before committing

● Optimize for speed
○ Only build required targets for local workflows

○ Use iterative build

○ Clean/Rebuild at night



Nightly Build Job
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Every night
Build game 

executables

Cook and Package 

the game Archive Artifacts

● Build all targets for daily QA and playtests

● Need manual trigger, you will use this all the time

● Optimize for speed
○ Use iterative build

○ Clean/Rebuild every week

● Backup the archive

Deploy to 

test servers



Exotic Configuration Job
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On Timer

(~20 minutes)

Build exotic 

configuration

Cook and Package 

the game Report any error

● Examples: Mac, Linux, Consoles, Debug, Shipping...

● Visibility of errors
○ Email alerts don’t work

○ Use a dashboard on a big screen

● Job needs to run often enough but not immediately on change

● Add these jobs even if you don’t plan to support configuration
○ If you change your mind you won’t regret it

○ Very easy fixes if caught early



● TDD is hard to apply to gameplay code

● Good candidates for TDD/Unit Tests
○ Core low-level libraries

○ Online micro-services

○ Critical layers and services (database, authentication, payment…)

● Tests should be performed post-commit

● Parallelize test jobs

Automated Tests Job
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On Timer

(~20 minutes)
Build test target Perform tests Report any error



More ideas
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● Static code analysis
○ Critical if working with c++

○ Treat defects as bugs

● Metrics and reports
○ Server load tests

○ Client performance tests

● Automate Everything...



Which tools and languages to use?

● Use whatever works with your source control and hosting
○ Jenkins is industry standard

○ GitLab and TeamCity have good reputation

● Languages
○ Prefer Python to bash/DOS

● Virtualize your build system early
○ You will need to scale

○ On-premises and on the cloud

● Use infrastructure as code
○ Keeps jobs consistent with code

○ History/Diffs/Rollback of CI Jobs

○ Easier to deal with branch specificities

○ Invaluable when codebase gets fragmented
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For multiplayer games
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● Development Servers
○ Nightly build

○ Playtest build

○ Latest stable build

● Preparing for release
○ Development environments will be different from release

○ Dependency with online services

○ Client delivery method (Steam, Launcher VS Shared Folder)

○ Create a staging environment identical to live

○ As early as possible

● Release process
○ Automate as much as possible

○ Need human validation steps



Branching policy
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Which source control to use?
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Which source control to use?

● Surprisingly not obvious question

● You MUST use source control

● No excuses

● Dropbox is not enough
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● Ubiquitous

● Decentralized

● Free and open-source

● Very bad at handling binary files
○ Even with Git-LFS

○ Basic File-locking introduced recently

○ No single-file operations!

● Notoriously bad user experience
○ GUI tools are all lacking

○ Need to use confusing command line

● Best cloud hosting solutions

● Best integrations and ecosystem

● You will need Git to collaborate with 3rd parties

Git
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Perforce

● Industry standard for Games

● Centralized, single-file versioning

● P4 DVCS

● Best for large projects and binary files

● Most powerful GUI tools

● Integrations
○ Smaller ecosystem than Git or SVN

○ Git-Fusion: works with some caveats 

○ Helix4Git: Git repositories hosted on P4 server

● Administration
○ Steep learning curve but very powerful. Requires self-hosting.

○ Deep customization: triggers, exclusive locking…

○ Enterprise features: access control, edge servers for outsourcing sites...

● Very expensive 28



Plastic SCM

● “The version control for Games and big projects”

● Best UX for users and admins

● Two different GUIs
○ Gluon: artist-friendly, file-based with exclusive locks

○ Plastic: for programmers with state of the art toolset
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Plastic SCM

● Semantic merge available as standalone tool

● Major drawback
○ A workspace must be either graph or file-based, not both

○ Separate code and data workspaces works best

● Integrations
○ Smallest ecosystem

○ Native integration with git ...

○ … with some caveats

● Less customizable than P4

● Much cheaper than P4
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SVN

● Centralized, single-file versioning

● Free and open source

● Good GUI tools available

● Integrations
○ Integrated in Unity and Unreal

○ Smaller ecosystem than Git, but bigger than P4

● Reportedly bad at handling large projects
○ Perforce is known to perform much better

● Many cloud hosting solutions

● Popular choice for indies

● Perforce beats it in almost every way except cost
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Other

● Mercurial
○ Has Git-LFS equivalent

● Unity Collaborate
○ Git Backend

○ Walled garden

○ No access to backend

○ Cannot be integrated in CI

● GitHub for Unity
○ Unity - Github specific

● GitCentral
○ Unreal specific

○ Centralized

○ File-based

○ Git-LFS backend
32

http://kahncode.com/gitcentral



Breakdown
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Centralized Model Binary files 

Scaling

UX Ecosystem Cloud 

hosting

Pricing

Perforce File-based ++ + + -
Assembla

5 users free

$$$/u/year

SVN File-based - - ++ + Free

Git Graph -- -- ++++ ++ Free

Plastic Graph or File

But not both
++ ++ + -

Plastic cloud

23.25$/u/mo

595$ perpetual



Take-away

● Use source control!

● Use Perforce if you can afford it
○ Still the best solution today

○ Watch out for Plastic SCM

● Using Git with cloud hosting
○ < 5 users - Azure DevOps

○ <10 GB - GitLab

○ >10 GB - BitBucket

● Contact me if you want tailored advice on this topic

● Using Unreal and on a budget, try GitCentral
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Always Playable
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Always Playable
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● The best infrastructure is not enough...

● … you need culture and discipline
○ Enforce discipline from day one

○ Almost impossible to create this culture later

● Do not let instability accumulate
○ Regression, crash, assert or test failure is treated as blocker

○ High priority bugs planned to be fixed in the sprint

○ Debug day each sprint

○ Boy scout rule: you find it you fix it (or escalate it)

● Peer review everything (code and data)

● Mandatory weekly playtest
○ Is only possible if the game is stable

○ Discover issues earlier and improve the game

○ Increase in overall quality



Always Playable

● Downsides
○ If you have continuous integration with post-commit tests...

○ … bugs and crashes will get continuously delivered as well!

○ The gain in iteration time is worth it if you make sure failure is treated immediately

● Slow down production velocity
○ Sacrifice some iteration time to introduce review processes

○ Stability before features slows down tasks...

○ … but bugfixes take less time now than they will later

● Better overall results
○ Better stability improves iteration time and quality of life

○ Fast iteration time and QoL leads to higher quality result

● Real gains but hard to quantify to team and management
○ Manage team frustration with the processes

● It’s up to you now!
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Thank you
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samuel@kahncode.com

@kahncode


